首页> 外文OA文献 >Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts
【2h】

Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts

机译:系统比较环形波阵面使用环形和Zernike圆多项式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic comparison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is shown that, unlike the annular coefficients, the circle coefficients generally change as the number of polynomials used in the expansion changes. Although the wavefront fit with a certain number of circle polynomials is identically the same as that with the corresponding annular polynomials, the piston circle coefficient does not represent the mean value of the aberration function, and the sum of the squares of the other coefficients does not yield its variance. The interferometer setting errors of tip, tilt, and defocus from a four-circle-polynomial expansion are the same as those from the annular-polynomial expansion. However, if these errors are obtained from, say, an 11-circle polynomial expansion, and are removed from the aberration function, wrong polishing will result by zeroing out the residual aberration function. If the common practice of defining the center of an interferogram and drawing a circle around it is followed, then the circle coefficients of a noncircular interferogram do not yield a correct representation of the aberration function. Moreover, in this case, some of the higher-order coefficients of aberrations that are nonexistent in the aberration function are also nonzero. Finally, the circle coefficients, however obtained, do not represent coefficients of the balanced aberrations for an annular pupil. The various results are illustrated analytically and numerically by considering an annular Seidel aberration function.
机译:给出了非圆形波阵面的波阵面分析理论,并将其用于系统比较环形和Zernike圆多项式用于分析环形波阵面。结果表明,与环形系数不同,圆形系数通常随着展开中使用的多项式数量的变化而变化。尽管一定数量的圆多项式的波前拟合与相应的环形多项式的波前拟合完全相同,但活塞圆系数不代表像差函数的平均值,其他系数的平方和并不代表产生其方差。四圆多项式展开的尖端,倾斜和散焦的干涉仪设置误差与圆环多项式展开的干涉仪设置误差相同。然而,如果这些误差是从例如11个圆的多项式展开获得的,并且从像差函数中消除了,则将残留像差函数归零会导致错误的抛光。如果遵循定义干涉图中心并在其周围画一个圆的通常做法,则非圆形干涉图的圆系数将不能正确表示像差函数。此外,在这种情况下,在像差函数中不存在的一些高阶像差系数也为非零。最后,然而,获得的圆系数并不代表环形光瞳的平衡像差的系数。通过考虑环形塞德尔像差函数以解析方式和数值方式说明了各种结果。

著录项

  • 作者

    Mahajan, V.N.; Aftab, M.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号